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J .  Phys. A: Math. Gen. 18 (1985) 765-778. Printed in Great Britain 

Collective rotations of asymmetrically deformed many-body 
systems: 111. Centrifugal distortion? 

L Lathouwers$ 
Rijksuniversitair Centrum Antwerpen, Dienst Teoretische en Wiskundige Natuurkunde, 
Groenenborgerlaan 17 I ,  2020 Antwerp, Belgium 

Received 18 July 1984 

Abstract. General kernel expansions beyond the Gaussian overlap and quadratic approxi- 
mations are derived. An order of magnitude analysis of the integrands in the projection 
integrals is carried out and all integrations are performed analytically. A theorem by 
Watson on the number of independent centrifugal distortion coefficients is extended to the 
projection formalism. 

1. Introduction 

In the quantum mechanics of many-body systems centrifugal distortions manifest 
themselves as corrections to rigid rotor spectra. In both molecular and nuclear physics 
the subject has a long history (for reviews see Kirchoff (1972) and Bohr and Mottelson 
(1975)). 

In molecular spectroscopy Kivelson and Wilson ( 1952) developed an approximate 
treatment of the rotational energy levels of a non-rigid asymmetric rotor. They found 
that in the expansion of the Eckart (1935) Hamiltonian products of four total angular 
momentum components are the leading terms in a perturbative description of cen- 
trifugal distortion. In general the rotational Hamiltonian may be written schematically 
as 

H = H2+ H4+ H6+. . . , (1 )  
where H2N represents a sum of terms involving angular momentum operators to the 
2Nth power. The solution of the corresponding eigenvalue problem and the 
phenomenological use of Hamiltonians such as ( 1 )  was systematised by Watson (1967). 
He showed that among the building blocks of HZN, the so-called standard forms 

Skim = t (J :J ;J : :  + J,"J;J: )  (2) 
only 2 N  + 1 are independent. Consequently in a phenomenological treatment of 
centrifugal distortion to order 2N there are at most 3 + 5 .  . . + 2 N  + 1 = N (  N + 2) 
adjustable parameters. This theorem clarified a number of inconsistencies which arose 
when the Kivelson-Wilson formalism (containing nine instead of eight spectroscopic 
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766 L Lathouwers 

constants for N = 2) was applied to non-planar molecules (Dreizler and Dendl 1965, 
Dreizler and Rudolph 1965). 

In nuclear physics, Hamiltonians of type ( 1 )  were developed by Bohr and Mottelson 
(1975). However, due to the extreme non-rigidity of nuclei, implying the absence of 
a reference configuration, alternative methods for the description of rotational motion 
were developed. One of those, namely angular momentum projection is the topic of 
this series of papers. For axial nuclei a first-order treatment by Peierls and Yoccoz 
(1967) led to the familiar J ( J +  1 )  law for the energy levels and the quantal definition 
of a moment of inertia. In the present context it was shown by Verhaar (1963) that 
centrifugal distortion of axially symmetric systems corresponds to an order by order 
evaluation of integrals appearing in the projection operator formalism. 

In paper I of this series (Lathouwers and Deumens 1982) the Peierls-Yoccoz theory 
was generalised to include asymmetric situations. The rotational secular equation 
which arises in the general non-axial case was reduced to a rigid rotor eigenvalue 
problem corresponding to a quantal moment of inertia tensor. In this contribution we 
aim to describe centrifugal distortion by working out an order of magnitude analysis 
which allows the systematic extension of the procedure used in I. In particular the 
theorem by Watson on the number of independent adjustable parameters will be 
generalised. 

2. Angular momentum projection 

The basic equations in the angular momentum projection formalism, as described in 
I, are the rotational secular equations 

[ H i L -  E J A i L ] c i  = 0 (3) 
L 

with - J  s K, L s J. These equations arise if one decomposes an arbitrary wavefunction 
x( x) into its angular momentum components, constructs superpositions of these states 
and determines the coefficients variationally (see e.g. MacDonald 1970). In the for- 
mulae % (a) and DiL(R) denote, respectively, the elements and corresponding irreduc- 
ible representations of the rotation group. Using the conventional Euler parametrisa- 
tion, in which R = (cp, 8, y )  with 0 s cp, y S 2 7  and 0 s 8 s T, the explicit forms of 
%(a), &(Cl)  and the volume element dR are 

%(a) = exp(-icpJ,) exp(-i8Jy) exp(-iyJ,) 

D ~ ~ ( O )  = exp(-ilc;cp)d’,,(O) exp(-iLy) I dR = Io2T dcp I: sin 8 d8 Io2T d y  

where the d i L (  8) or Wigner functions are related to Jacobi polynomials. Aside from 
these purely group theoretical attributes, the integrals that generate the Hamiltonian 
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and overlap matrices H i L  and A i L  contain dynamical quantities: the so-called Hamil- 
tonian and overlap kernels, (,yIH% (fl)lx) and (~19 (fl)l,y). Their behaviour depends 
upon the detailed properties of the intrinsic state ~ ( x ) .  Therefore no analytical progress 
in the calculation of the matrix elements (4) and ( 5 )  seems possible such that, in 
general, a numerical evaluation of the projection integrals is required. Angular momen- 
tum projection has therefore long been regarded as a purely numerical technique 
incapable of generating any phenomenological insight. 

However, further insight into the structure of the rotational secular equations can 
be gained if one observes that the kernel values are a measure of the interaction, via 
the Hamiltonian or directly, between the original state x(x)  and its rotated version 
%(fl)x(x). If this interaction is weak, i.e., significant for small rotations only, the 
intrinsic state is said to be strongly deformed. Strong deformation can be caused by 
localisation of individual particles, as in molecules, or by the combined effect of a 
large number of delocalised particles, as in tri-axial nuclei. The case of strong deforma- 
tion is therefore quite general and can cover both rigid and non-rigid situations. 
Assuming that the intrinsic state under consideration is strongly deformed implies that 
we should concentrate on regions in the parameter space corresponding to rotations 
% ( C l )  ‘close’ to the unit operator. However, the Euler parametrisation, used so far, is 
not suited for this purpose. Indeed, figure 1 makes it clear that small rotations do not 
necessarily correspond to small azimuthal angles cp and y which causes the relevant 
integration domain to be a non-connected subset of the square Os cp, y s 2 ~ .  

i 

I 

Figure 1. Region in the (cp, y )  and ( E ,  8 )  plane corresponding to small rotations. 

Studying the topology in the (cp, y )  plane, using the invariance of the integrands 
under translations of 2~ in the cp and y directions, makes it clear that a more convenient 
parameterisation is obtained by using the sum and difference angles, E = f ( c p  + y )  and 
S = f( cp - y ) ,  in addition to the polar angle 0. Indeed, in the ( E ,  8) plane the relevant 
rotations are situated in a narrow strip along the S axis, i.e., small rotations correspond 
to small E (and 0)  while 6 is arbitrary in this respect. It is easily shown (see I )  that 
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the basic ingredients in the projection integrals, if transformed to the (E ,  8, S )  parametri- 
sation, take the form 

( 9 )  

(10) 

( 1 1 )  

Using these expressions and introducing the well known Gaussian overlap and quad- 
ratic approximations it was shown in I that the rotational secular equation (3) reduces 
to a rigid rotor eigenvalue problem corresponding to the inertia tensor Q 

9(S1)=exp(-isJ2) exp[-i8(Jy cos 8 - J ,  sin S)]exp(-i~J,)  

&(R) = exp[-i(K + L)~]d:~(fl) exp[-i(K -LIS] 

[ dR = [+=I2  dE [: sin 8 d8 [+= dS. 
--71/2 -7r 

Q =  F K - ' F  (12) 

The Fkl are the components of the so-called angular momentum fluctuation tensor 
while E ( 0 )  is referred to as the intrinsic or internal energy. It is the purpose of this 
paper to go beyond the Gaussian overlap and quadratic approximations and to show 
that more general expansions lead to modifications of the rigid rotor spectra that can 
be interpreted as centrifugal distortion effects. Throughout the derivations it is assumed 
that the intrinsic state ~ ( x )  is a given real function which is normalised to one. 

3. General expansions of projection integrands 

Since it has been established that infinitesimal rotations correspond to small values of 
the angles E and 0, 6 being completely arbitrary in this respect, the overlap kernel 
A (  E ,  8,S) is expected to be a sharply peaked function of E and 8. Therefore we expand 
log A( E, 8, S ) ,  rather than A( E ,  8, 8 )  itself, in a Taylor series 

On the other hand, since H ( E ,  8 , S )  behaves similarly as A(&, 8, S ) ,  we may safely 
expand their ratio, i.e., we propose a second expansion 

Our first task is now to express the coefficients in these expansions in terms of quantities 
directly obtainable from H(E,  8, 8) and A(&, 8, 8 ) .  For this purpose we first rewrite 
the defining equation for the kernels as 

( X I ~ ( R ) I X ) =  A(&, = (x(S)l exp(-iEJ,) exp(-ieJ,) e x p ( - i 4 I x ( S ) )  (17) 

(x lH9(0) lx )= H ( E ,  @,a)  = ( x ( S ) ( H  exp(-isJz) exp(-iOJ,) exp(-iEJ,)IX(S)) (18) 

where the state ~ ( 6 )  is obtained by rotating all particles an angle S around the z axis, 
i.e., 

x ( S ) = x ( x l S )  =exp(iSJ,)X(x) = x ( A ( 6 ,  2 , ) ~ ) .  (19) 
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Observe that if ~ ( x )  is real so is ~ ( ~ 1 6 ) .  Direct expansion of the exponentials in 
(17)-( 18) yields (we treat the overlap kernel as an example whenever the same result 
holds for the Hamiltonian kernel) 

The reality of x ( S ) ,  implying time reversal invariance, requires that only an even 
number of angular momentum components leads to nonvanishing matrix elments 
(x (6) lJ iJ ,"Jh l ,y (6) ) .  Furthermore if one moves a J,  component to the left of J," past 
this operator all new terms which arise, if one takes into account the angular momentum 
commutation relations, contain an odd number of J components and therefore do not 
contribute. Introducing a new summation index k + I = n we can then rewrite (20) as 

Similarly, if the Hamiltonian is time reversal invariant we have 
( m + n ) / 2  

H ( E ,  e, 6)  = 2" (-1 (x(s)lHJ,"J:lx(s))e"&n 
,,,+" m ! n !  
even 

=e H,,(6)6"&". (22) 

For the overlap case we can convert the expansion of A( E, 6,s) into one for log A( E ,  8,s) 
by using the series 

5 ( _ ) k + '  
l og ( l+z )=  - Z k. 

k = i  k 

Identifying the log arguments in (15) and (23) leaves us with the calculation of 

1 +  Am,(6)em&" 
m + n z 2  

k = l  

The multinomial theorem then tells us that the em&" terms in the expansion (15) arising 
from the kth power in (24) are of the form 

where [ k ]  = [ k , ,  k 2 , .  . . , kp]  denotes a partition of k, i.e., k l  + k 2 + .  . .+ kp = k. The 
subscripts m, and n, are restricted by the relations 

f: kimi = m, kini = n 
i = l  i =  I 

and no two pairs (m, ,  n,) are identical (see Abramowitz and Stegun 1965) Combining 
the restrictions on the indices mi, n, and k, yields a maximum power k that can 
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contribute to the em&" term in ( 1 5 ) .  Indeed 
P P 

m + n =  k i ( m i + n , ) z 2  1 k , = 2 k .  ( 2 7 )  
, = I  , = I  

Therefore the infinite sum over k in ( 2 4 )  truncates at k = f ( m  + n) and the final result 
for the coefficients Lmn(6)  reads 

If we define a n  extra expansion for the inverse of the overlap kernel by 

~ / A ( E ,  e, s)=:C D m n ( 6 ) e m E n  ( 2 9 )  

the coefficients D m n ( 6 )  can be obtained as above by using the series 
oc 

l / ( l + z ) =  c ( - 1 ) k Z k .  ( 3 0 )  
k=O 

The result is only a slight modification of the way in which contributions from k 
partitions are summed in (28) 

The ultimate expansion of the ratio K ( E ,  0, 6 )  is then easily derived since 

Observe that in view of (19) the sums in both ( 2 9 )  and ( 3 3 )  are also restricted to values 
of m and n for which m + n is even. 

It will be shown in the next section that a systematic evaluation of the projection 
integrals also involves the expansion into Taylor series of the (8, E )  part of the Wigner 
functions. This presents no problem for the E dependence since only exponentials are 
involved. However, since it will be important to distinguish between even and  odd 
powers we put 

exp[i( K + L ) E ]  = cos( K + L ) E  + i sin( K + L ) E  

= cp ( K + L) E'P + i 1 sp ( K  + L )  E*P+I  ( 3 4 )  

( 3 5 )  

P P 

c,( K + L )  = (-)'( K + L)"/ ( 2 p ) ! ,  s,(K + L )  = ( - ) P (  K + L ) 2 p + 1 / ( 2 p  + 1 )!. 

For the derivation of power series for the d:,(O) one can start from the defining 
equation 

( 
& ( e )  = ( J K I  exp(-ieJ,)iJL) = - (JK[J; [JL) .  (36) 

P P !  
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Assuming K 2 L and using the properties of the angular momentum shift operators 
J ,  = i ( J x  It iJ,) one can check that 

d i L (  8) = dp(JKL)OK-L+2p  
P 

(37) 

Observe that d&,( 8) contains only even or odd 8-powers depending on whether K - L 
is even or odd. The matrix elements (JKIJPIJK) can easily be calculated using 
elementary angular momentum theory (see e.g. Brink and Satchler 1968). This com- 
pletes an admittedly highly technical but necessary step in a systematic evaluation of 
the projection integrals. We now have at our disposal power series, for both kernels 
and D functions, adapted to the topology of the ( E ,  8, 6) parameter space of the rotation 
group, i.e., expansions in E and 8 with conservation of the full 6 dependence of the 
expanded quantities. 

4. Order of magnitude analysis 

The strong deformation of the intrinsic state implies good convergence for small 8 and 
E of the power series derived in the previous section. In turn this can be translated 
into stating that all coefficients K m n ( S )  and Lmn(6)  are of the same order of magnitude. 
However, the quantities K ( E ,  8 , S )  and log A(&, 8 , S )  are not the ones which enter into 
the integrals (4) and ( 5 ) .  It is therefore necessary to give expressions for H ( E ,  8,s) 
and A(&, 0, 8) which reflect the feature of strong deformation and to which successive 
approximations can be defined. In the language of perturbation theory: we need an 
unperturbed problem and a set of perturbations to which one can assign an order of 
magnitude in terms of an expansion parameter. In I we presented a zeroth-order 
version of the present scheme such that our first problem, the definition of a suitable 
unperturbed problem, is already solved. A short summary adapted to the present 
context will therefore suffice. 

If we exponentiate (15) we obtain an expression of A(&, 8, 6) in terms of the 
logarithmic coefficients Lmn( 6) 

it will be useful to subdivide the terms in the exponent into groups for which m + n = 2 N  
with N =  I ,  2 ,  3, .  . . , i.e., and rewrite (39) as 

A(&, 0, s) = exp( m + n = 2  L , , ( s ) e m E n )  exp( m + n = 4  L , , ( s ) e m E n  ) . . . . (40) 

It is clear that since all Lmn( S ) ,  independently of the value of m + n, are of the same 
order of magnitude, the exponentials with m + n 2 4 will vary slowly compared to the 
term with m + n = 2 .  Therefore the latter will determine the gross features of the overlap 
kernel. The Lmn(S)  with m + n  = 2  are easily computed from ( 2 1 )  and ( 2 8 )  

L, ,(s)  = - - t (x (s ) l~ ; l x (6 ) )  = -;((J:)  sin' 6 + ( J ; )  cos2 6 -(JJ,> sin 2 6 )  

L , , ( S )  = - 2 ( x ( 6 ) I J J z I x ( S ) )  = 2 ( ( J J z )  sin 6 - ( JJJ  cos 8) 

L02(6) = -2(x(S)lJIlx(6) = - 2 m .  

(41) 
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The values of these coefficients are completely determined by the elements of the 
angular momentum fluctuation tensor Fkl defined in (13) .  A further simplification of 
the expressions (41) can therefore be obtained by diagonalising F k ,  which amounts to 
a rotation of the intrinsic state (see I). Adopting this conventional orientation of x(x) 
one sees that L l l ( 6 )  vanishes while L2,(6)  reduces to 

(42) 

In view of the fact that the m + n = 2 terms constitute the dominating part of the overlap 
kernel we define its unperturbed or zeroth-order form by 

(43) 

Observe that (43) is indeed a sharply peaked function of E ,  8 for all 6 provided (.I;)> 1, 
i.e., provided the eigenvalues of the angular momentum fluctuation tensor are large. 
That this is indeed the signature of strong deformation in all directions was established 
in I. 

Since the remainder of the overlap kernel, i.e., the right-hand side exponentials 
in (40), varies slowly compared with AO(&, 8, 6 )  it may be expanded in a Taylor series 

~ ' ~ ( 6 )  = - ; ( ( J : )  sin' 6 + ( ~ t )  cos' 6). 

A,( E ,  8, 6) = exp[-i((Jf) sin' 6 + ( J : )  cos' 6)8' -~(J;)E']. 

I k  (44) exp( ~,.(s)s"e.) = l +  " 1  y( c L m n ( a ) v E n  . 
m + n 3 4  & = I  k .  m + n z 4  

In order to estimate the importance of these terms relative to Ao( E ,  8, 6 )  we introduce 
the order parameter A by putting 

3 
l/A = 1 (J;)/3. 

& = I  
(45) 

For this definition to be consistent with that of the zeroth-order overlap kernel the 
exponent in (43) should be of zeroth-order in A, i.e., 

(46) 

Since both L2,(6) and LO2(8)  are of order 1 / A  this implies that 8 and E are to be 
considered as quantities of order A We must therefore carry out the order magnitude 
analysis of (44) on the basis of the estimates 

L20( 6 )  e2 + Lo'( 6 )  E' = O( A'). 

1. (47) and e m e n  = o ( ~ ( m + n ) / Z  Lmfl(6) = 0 ( 1 / A )  

With these guidelines a general perturbation expansion of the full overlap kernel can 
now be obtained by regrouping the terms in (44j into parts of equal order in A, i.e. 

By repeatedly using the multinomial theorem we can work out the powers in (44) 
while the estimates (47) allow us to decide upon the order of magnitude of the individual 
contributions. Some combinatorics then yields the following result for the overlap 
perturbation of order N 
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where m and n are defined as in (26) and the sum in (49) is restricted by the condition 
4 s  m + n s 4 N .  Requiring each term in (49) to be of order N fixes the number k in 
(50). Indeed one easily checks using (48) that this implies that k = 4( m + n )  - N. 

For the derivation of a Hamiltonian counterpart of (48) we first observe that since 
Km,(6) are of the same order of magnitude they can be considered of order l / h  by 
chosing appropriate energy units. Secondly, the first term in (33)  is nothing but the 
intrinsic energy, i.e., 

( 5 1 )  

which can be taken as the origin of the energy scale. We therefore start the K expansion 
at m + n = 2 which amounts to computing purely rotational energies E - E ( 0 ) .  The 
zeroth-order Hamiltonian kernel is then given by 

Koo = ( X I  H I x )  = E (0) 

Ho(5 0, 6) =Lo(&, 0, 6)Ko(&, 6, 6 )  ( 5 2 )  

KO(&, 0, 6 )  = C Kmn(6)enan .  
m + n = 2  

(53) 

Explicit expressions for K,,(6), K , , ( S )  and Ko,(6) are easily computed from (31)  and 
(33)  and have been listed in I. For the full N kernel we have 

N = l  N = l  
(54) 

Observing that the order of a product of two kernel parts is the sum of their individual 
orders we obtain the perturbation expansion of the Hamiltonian kernel 

In the forms (48) and (56) the projection kernels are now ready to be integrated with 
the irreducible representations of the rotation group. 

The order of magnitude analysis of the expanded form of the Wigner functions 
is possible provided the total angular momentum is not too high. Indeed, it is well 
known that the d.',,( e )  consist of exponential-like part near 0 = 0 and have an oscillatory 
behaviour of the type cos(J+f)O for larger arguments. Therefore, for the expansion 
(37)  to be valid it is necessary that the nodes of the d i L ( e )  remain outside the cut-off 
range provided by the unperturbed overlap kernel. This will be the case provided 

J < ( J ? ) ' l 2 .  (58) 
Under this condition the coefficients in the Taylor expansions (34) and (37) can be 
considered of order A' and the order of magnitude of the terms is determined by the 
total (ea)  power. In view of this we also need to include the extra sin 0 from the 
&volume element into our expansions. Anticipating the fact that the analytical evalu- 
ation of the resulting 0 integrals will necessitate a change of variables from 0 to O 2  
we put 
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The terms in large brackets can be included in the expansion of d.',,( e), i.e., we replace 
(37)  by 

It will be shown that also in the D-function part of the integrand the total ( O s )  power 
must be even. We therefore sort out contributions of order A N  and define 

for K - L even and odd respectively. These functions DN( 0, E IJKL) are indeed of 
order A N  if the summation over p and q is restricted by p + q = N - I[$( K - L +  l)], 
where I[$( K - L +  1 )] stands for the integral part of $( K - L +  1). 

The ingredients for the projection have now been collected into groups that can 
be assigned a label indicating the order of magnitude, measured in powers of A, of its 
elements. 

5. Order by order projection 

In this section we aim to perform the integrations over E ,  8 and 6 in such a way that 
the resulting matrix elements H k L  and A i L  consist of terms to which one can still 
assign a definite order of the parameter A. 

As a result of the diagonal form of Fkl the unperturbed overlap kernel factorises 
as follows 

This makes the analytical evaluation of the projection integrals feasible provided they 
are performed in the proper order. Clearly, the angle S must be integrated out exactly. 
On the one hand this is a complication because the 6 dependence of the kernels is 
extremely complex but on the other hand, this integration does not affect the order of 
magnitude analysis since 6 has nothing to do with a rotation being small or large. It 
will therefore suffice to demonstrate that the S integrations can be performed analyti- 
cally, without explicitly going through the entire process, and to establish possible 
correlations with the 6 and E integrals. 

The net effect of integrating out S is to replace the full kernels by a set of reduced 
kernels, one for each subdiagonal, i.e., 

+ x  

dS A( E, 8,s) exp[i( K - L ) S ] .  
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Inserting the decomposition (48) of the overlap we can further specify the A( E, 8 I K - L) 
as 

A N ( & ,  8 I K - L) = exp(-cE2) exp( -c+e2) 

x {-: d S ex p [ c- 0 CO s 2 6 + i ( K - L ) 61 WN ( E,  8, S ) (68) 

with analogous expressions for the Hamiltonian kernel. Taking into account the 
perturbative kernel expansions established in the previous section, one can see that 
the most general S integral is of the form 

dS exp[c- O2 cos 28 + i (  K - L)S]  
i x  

I_, 
x (x(s)lHJ,"J:IX(S,)n (X(s)lJ,"~J:~IX(s))k~. (69) 

1 

Transferring the S dependence of the intrinsic state into a rotation of the Jy powers, 
the kernel part of the above integrand becomes 

(xIH(J, cos 8 - J ,  sin 8)"J: (x )  n ( x ~ ( J ,  cos S - J ,  sin s ) ~ ~ J : ~ I x > ~ ~  (70) 
I 

Observe that this is not a mere application of the binomial theorem since J, and J, 
do not commute. However, after averaging over x, all terms from (Jy  cos 6 - J ,  sin 8)"' 
with the same number of J, and Jy operators are equal due to time reversal invariance 
hence (70) = (71) holds. Performing S integrals thus amounts to making linear combina- 
tions of expectation values of standard forms with coefficients given by 

+ x  

dS exp[c-02 cos 2S+ i ( K  - L)S](cos S)k(sin 8)' 

where k +  1 = m + X i  kimi is the total number of 8 powers multiplying (71) in the kernel 
expansions. The integrals (72) establish a link between this number and the order of 
the subdiagonal, i.e. K - L, one is computing. Indeed it is clear that 

dS exp(c-02 cos 26 ) .  . .=[1+(-)  K - L + k + ' ~  J: dS exp(c-O2 cos 26 ) .  . . I, (73) 

which implies that the even and odd 8 powers in the kernel expansions contribute, 
respectively, to even and odd subdiagonals in the projected matrix elements H i L  and 
A i L .  Introducing the definitions of sin S and cos S in terms of exp(*iS) into (72) one 
can evaluate these integrals analytically as sums of Bessel functions of imaginary 
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argument 

( ; z ) 2 k  
d+  exp( z cos 4 )  cos t+ = (42)‘ c 

k=O k ! ( k + t ) ! ’  (74) 

Identification with (72)  shows that we must put 4 = 2 6  and z = c-e2 .  As far as the 
order of magnitude is concerned, it is important to notice that since c-B2= O(Ao) all 
numerical coefficients which arise from the 6 integration are of zeroth order. Therefore, 
as we have already argued intuitively, the 6 integration does not affect the order of 
magnitude analysis, i.e. the reduced kernel parts A N ( & ,  8 l K  - L )  are indeed of the 
same order of magnitude as the perturbations W N ( & ,  8, 6) they originate from. This 
is a very convenient result since we can continue using the order of magnitude analysis 
for the E and 0 integrations without explicitly computing the 6 integrals. However, 
this remains a necessary step in practical applications. 

So far we have not truncated any of the integrand expansions. However, having 
performed the 6 integration, at least in principle, we must for practical applications 
adopt a proper truncation scheme. It is important to do this in a way which introduces 
a balanced approximation of the different ingredients entering the projection integrals. 
Therefore the following convention in proposed. We truncate the A-ordered expansions 
of both kernels and Wigner functions at the same maximum value N,,, = T, i.e., 

T 7 

(75)  

and the summations in the D function parts (62) and (63)  are restricted by p + q 
T - I[$( K - L +  l)]. Hereby we make sure that equal importance is given to geometrical 
(rotation group representations) and dynamical (kernels corresponding to the chosen 
internal or intrinsic state) aspects of the projection. Inserting the resulting series into 
the projection integrals we finally obtain ordered expressions for the matrix elements 
H i L  and A i L ,  e.g., 

A J K ~  = A;~(N)  (76)  
N = I [ k ( K - L + I  j ]  

AJKJN)= f 1; d 8’ 1-+:22 dE D M  (8, E I JKL)AN-M (8, E I K - L ) .  (77)  
M = I [ f ( K  - L + l  j ]  

Thus a truncation at order T, as defined above, yields projected elements that have a 
band structure. Since the minimum value of N in (76) is I [ $ ( K  - L +  l)]  the values 
of matrix elements decreases with increasing subdiagonal index K - L. They are 
neglected completely for K - L >  2T in case 2T is smaller than the maximum value 
of K - L, i.e., 2J. 

For each of the constituents in (77) we have derived a finite expansion in powers 
of 8 and E which combined with the result of the 6 integration leads to the following 
definite integrals 

for K - L and n even 
for K - L and n odd (78) de  exp(-cE*)&” x 

1; de2 exp(-c+e2)eK-L+m+2P I ,  ( C- 8’). (79)  
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The rules for the E integrals follows from the established fact that both m and n have 
the same parity as the subdiagonal index K - L. Therefore the terms contributing to 
(77) are those for which the 6 and E powers for both D functions and kernels are all 
even or all odd. We already used this result in setting up (62) and (63). 

A final approximation is now called for in order to evaluate (78) and (79) analyti- 
cally. Since both c and c+ are much larger than unity we can extend the integration 
ranges to 0, +m and +CO, +m, for 6 and E integrals respectively, without changing the 
order of magnitude of the results. Having done so (78) and (79) reduce to 

dx exp( -ax2)x2' = (2r+ ~ ) ! ! ( t ) ' ' ~  
(2a) '  

los dy exp( - by)ysI,(y) = r( s + t + 1 )( b) PT'( 2) 
where b = c+/c - ,  b- = (b2-  1)"2 and P i '  the associated Legendre polynomials. 

With the above information one can assemble the projected Hamiltonian and 
overlap matrices H i L  and A i L .  For low truncation order, say T equal to 1 or 2, this is 
still feasible by hand. However, for higher-order approximations the development of 
a computerised assembly code is necessary. 

6. Extension of Watson's theorem 

Carrying out the above program to order T requires knowledge of the matrix elements 
( x I H J E J ~ J T I x )  and ( x l J t J k J Y l x )  for k +  I+m = 2 N  s 2 T  (see (71)). However, due to 
the angular momentum commutation rules certain relationships exist between these 
quantities. In order to minimise the number of integrals to be evaluated we should 
therefore determine exactly how many of these matrix elements are mutually indepen- 
dent. In molecular spectroscopy of asymmetric-top molecules this problem was solved 
by Watson (1967). He observed that since the spectrum of a general rotational 
Hamiltonian is invariant under a unitary transformation the latter can be chosen to 
simplify the theory. Expressing both the Hamiltonian and the unitary transformations 
in terms of standard forms (2) he then showed that the part of the rotational Hamil- 
tonians consisting of standard forms of order 2N contains at most 2 N +  1 independent 
coefficients. We will refer to this result as Watson's theorem. The proof of Watson's 
theorem is long and complex. In addition, it applies only to semi-rigid molecules. 
Here we will show how the basic results obtained by Watson can be used to obtain 
an analogous theorem in the projection formalism, thereby essentially extending the 
original proof to non-rigid situations. 

The starting point in the projection technique is the intrinsic state x (  x)  obtained 
by applying a variational principle to the Hamiltonian H thus yielding the intrinsic 
energy E ( 0 )  = ( x l H l x ) .  Clearly, if we were to apply the same procedure to the Hamil- 
tonian = UHU+, with U+ = U - ' ,  the state f ( x )  = U x ( x )  is associated with the same 
intrinsic energy. The approximate angular projection, outlined above, applied for R 
and f ( x )  then contains expectation values for which we can write 
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where k+ I +  m is an even integer. This follows from ( l ) ,  (71) and the reality of ~ ( x ) .  
If the unitary transformation U is put in the form 

U = exp(iS) with S = S p q r S p q r  
P4‘ 

(84) 

S needs to be Hermitian. On the other hand if d is to be time reversal invariant, U 
must share this property which in turn requires S to change sign under time reversal. 
Both conditions can be satisfied by taking real coefficients spqr and restricting the 
indices to have an odd sum, i.e., p + q + r is an odd integer. Aside from these restrictions 
the sP4. are arbitrary. The essence of Watson’s theorem is then that the sP4. can be 
chosen such that among the ( N +  1)(2N+ 1) possible operators, U+SklmU with k+ I +  
m = 2 N, only 2 N + 1 are non-vanishing. This implies that among the expectation values 
(78) or (79) only 2N+ 1 are mutually independent?. Since the intrinsic state ~ ( x )  is 
fixed so are the expectation values (82). Thus the only remaining adjustable quantities 
are a set of 2 N +  1 independent Hamiltonian matrix elements (83). From a 
phenomenological point of view this means that the angular momentum projection 
formalism contains at order N at most 2 N +  1 adjustable parameters, i.e., Watson’s 
theorem is readily extendable. Therefore centrifugal distortion in rigid and non-rigid 
systems can be treated by the same methods and differs only in the magnitude of the 
order parameter A. For a semi-rigid molecule A = K ~ =  where K is the Born- 
Oppenheimer perturbation parameter (Watson 1967). In non-rigid systems A can be 
much larger implying a much slower convergence of the perturbation expansions. The 
magnitude of centrifugal distortion coefficients of Van der Waals molecules and their 
anomalous behaviour under isotopic substitution provides a clear demonstration 
(Leopold 1984). 
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